Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.594
Filtrar
1.
Drug Metab Dispos ; 52(5): 432-441, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38485279

RESUMEN

Drug-induced liver injury (DILI) is a frequent cause of clinical trial failures during drug development. While inhibiting bile salt export pump (BSEP) is a well-documented DILI mechanism, interference with genes related to bile acid (BA) metabolism and transport can further complicate DILI development. Here, the effects of twenty-eight compounds on genes associated with BA metabolism and transport were evaluated, including those with discontinued development or use, boxed warnings, and clean labels for DILI. The study also included rifampicin and omeprazole, pregnane X receptor and aryl hydrocarbon receptor ligands, and four mitogen-activated protein kinase kinase (MEK1/2) inhibitors. BSEP inhibitors with more severe DILI, notably pazopanib and CP-724714, significantly upregulated the expression of 7 alpha-hydroxylase (CYP7A1), independent of small heterodimer partner (SHP) expression. CYP7A1 expression was marginally induced by omeprazole. In contrast, its expression was suppressed by mometasone (10-fold), vinblastine (18-fold), hexachlorophene (2-fold), bosentan (2.1-fold), and rifampin (2-fold). All four MEK1/2 inhibitors that show clinical DILI were not potent BSEP inhibitors but significantly induced CYP7A1 expression, accompanied by a significant SHP gene suppression. Sulfotransferase 2A1 and BSEP were marginally upregulated, but no other genes were altered by the drugs tested. Protein levels of CYP7A1 were increased with the treatment of CYP7A1 inducers and decreased with obeticholic acid, an farnesoid X receptor ligand. CYP7A1 inducers significantly increased bile acid (BA) production in hepatocytes, indicating the overall regulatory effects of BA metabolism. This study demonstrates that CYP7A1 induction via various mechanisms can pose a risk for DILI, independently or in synergy with BSEP inhibition, and it should be evaluated early in drug discovery. SIGNIFICANCE STATEMENT: Kinase inhibitors, pazopanib and CP-724714, inhibit BSEP and induce CYP7A1 expression independent of small heterodimer partner (SHP) expression, leading to increased bile acid (BA) production and demonstrating clinically elevated drug-induced liver toxicity. MEK1/2 inhibitors that show BSEP-independent drug-induced liver injury (DILI) induced the CYP7A1 gene accompanied by SHP suppression. CYP7A1 induction via SHP-dependent or independent mechanisms can pose a risk for DILI, independently or in synergy with BSEP inhibition. Monitoring BA production in hepatocytes can reliably detect the total effects of BA-related gene regulation for de-risking.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Indazoles , Pirimidinas , Sulfonamidas , Humanos , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Omeprazol/efectos adversos , Ácidos y Sales Biliares , Colesterol 7-alfa-Hidroxilasa/metabolismo
2.
J Ethnopharmacol ; 328: 118091, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38521427

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tianma-Gouteng granules (TGG) is a traditional Chinese medicine (TCM) compound that was first recorded by modern medical practitioner Hu Guangci in "New Meaning of the Treatment of Miscellaneous Diseases in Traditional Chinese Medicine". It is widely used to treat hypertensive vertigo, headache and insomnia. AIM OF STUDY: To investigate the antihypertensive effect of TGG and explore its mechanism. MATERIALS AND METHODS: Spontaneously hypertensive rats (SHR) were prepared a model of the ascendant hyperactivity of liver yang syndrome (AHLYS), blood pressure and general state of rats were recorded. A series of experiments were performed by enzyme-linked immunosorbent assay (ELISA), ultra high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS), 16S rRNA sequencing, real-time fluorescence quantitative PCR (RT-qPCR), and enzymatic colorimetry. RESULTS: TGG can effectively lower blood pressure and improve related symptoms. TGG significantly reduced the levels of IL-1ß, IL-6, TNF-α, Renin and AngII. A total of 17 differential metabolites were found in plasma, with the two most potent metabolic pathways being glycerophospholipid metabolism and primary bile acid biosynthesis. After TGG intervention, 7 metabolite levels decreased and 10 metabolite levels increased. TGG significantly increased the relative abundance of Desulfovibio, Lachnoclostridium, Turicibacter, and decreased the relative abundance of Alluobaculum and Monoglobu. TGG also downregulated Farnesoid X Receptor (FXR) and Fibroblast Growth Factor 15 (FGF15) levels in the liver and ileum, upregulated Cholesterol 7α-hydroxylase (CYP7A1) levels, and regulated total bile acid (TBA) levels. CONCLUSION: TGG can regulate bile acid metabolism through liver-gut axis, interfere with related intestinal flora and plasma metabolites, decrease blood pressure, and positively influence the pathologic process of SHR with AHLYS. When translating animal microbiota findings to humans, validation studies are essential to confirm reliability and applicability, particularly through empirical human research.


Asunto(s)
Ácidos y Sales Biliares , Colesterol 7-alfa-Hidroxilasa , Ratas , Humanos , Animales , Ácidos y Sales Biliares/metabolismo , Presión Sanguínea , Colesterol 7-alfa-Hidroxilasa/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , ARN Ribosómico 16S/metabolismo , Reproducibilidad de los Resultados , Hígado/metabolismo
3.
Metabolism ; 152: 155774, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38191052

RESUMEN

BACKGROUND & AIMS: Dysregulated cholesterol metabolism is the major factor responsible for cholesterol gallstones (CGS). Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in cholesterol homeostasis and its inhibitors secure approval for treating various cholesterol metabolic disorders such as hypercholesterolemia and cardiovascular diseases, but its role in CGS remains unclear. Our study aims to clarify mechanisms by which PCSK9 promotes CGS formation and explore the application of the PCSK9 inhibitor, alirocumab, in preventing and treating CGS. APPROACH & RESULTS: The expressions of PCSK9 were notably increased in CGS patients' serum, bile, and liver tissues compared to those without gallstones. Moreover, among CGS patients, hepatic PCSK9 was positively correlated with hepatic cholesterol and negatively correlated with hepatic bile acids (BAs), suggesting PCSK9 was involved in disrupted hepatic cholesterol metabolism related to CGS. Mechanistically, in vitro experiments demonstrated that inhibition of PCSK9 enhanced nuclear expression of PPARα by diminishing its lysosomal degradation and subsequently activated CYP7A1 transcription. Finally, inhibition of PCSK9 prevented CGS formation and dissolved the existing stones in CGS mice by elevating the conversion of cholesterol into BAs through PPARα-mediated CYP7A1 activation. Additionally, serum PCSK9 level may function as a prognostic signature to evaluate the therapeutic efficacy of PCSK9 inhibitors. CONCLUSIONS: Inhibition of PCSK9 exerts preventive and therapeutic effects on CGS by activating PPARα-mediated CYP7A1 expression and facilitating the conversion of cholesterol into BAs, which highlights the potential of PCSK9 inhibition as a promising candidate for preventing and treating CGS in clinical applications. IMPACT AND IMPLICATIONS: PCSK9 plays a pivotal role in cholesterol metabolism and its inhibitors are approved for clinical use in cardiovascular diseases. Our study observes inhibition of PCSK9 prevents and dissolves CGS by activating PPARα-mediated CYP7A1 expression and facilitating the conversion of cholesterol into BAs. Mechanistically, PCSK9 inhibition enhanced the nuclear expression of PPARα by diminishing its lysosomal degradation and subsequently activated CYP7A1 transcription. Our study sheds light on the new function and mechanism of PCSK9 in CGS, providing a novel preventive and therapeutic target with potential clinical applications.


Asunto(s)
Enfermedades Cardiovasculares , Cálculos Biliares , Humanos , Animales , Ratones , Proproteína Convertasa 9/metabolismo , PPAR alfa , Enfermedades Cardiovasculares/prevención & control , Cálculos Biliares/tratamiento farmacológico , Cálculos Biliares/prevención & control , Colesterol , Colesterol 7-alfa-Hidroxilasa
4.
J Ethnopharmacol ; 322: 117644, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38135227

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperlipidemia is characterized by the disorder of lipid metabolism accompanied by oxidative stress damage, and low-grade inflammation, with the pathway of cholesterol and bile acid metabolic are an important triggering mechanism. Polymethoxyflavones (PMFs) are the active constituents of Aurantii Fructus Immaturus, which have many biological effects, including anti-inflammatory, antioxidant activities, anti-obesity, suppressing adipogenesis in adipocytes, and ameliorate type 2 diabetes, with potential roles for regulation of lipid metabolism. However, its associated mechanisms on hyperlipidemia remain unclear. AIM OF THE STUDY: This study aims to identify the anti-hypercholesterolemia effects and mechanisms of PMFs in a hypercholesterolemia model triggered by high-fat compounds in an excessive alcohol diet (HFD). MATERIALS AND METHODS: A hypercholesterolemia rat model was induced by HFD, and PMFs was intragastric administered at 125 and 250 mg/kg daily for 16 weeks. The effects of PMFs on hypercholesterolemia were assessed using serum lipids, inflammatory cytokines, and oxidative stress levels. Hematoxylin & eosin (H&E) and Oil Red O staining were performed to evaluate histopathological changes in the rat liver. The levels of total cholesterol (TC) and total bile acid (TBA) in the liver and feces were determined to evaluate lipid metabolism. RAW264.7 and BRL cells loaded with NBD-cholesterol were used to simulate the reverse cholesterol transport (RCT) process in vitro. The signaling pathway of cholesterol and bile acid metabolic was evaluated by Western Blotting (WB) and qRT-PCR. RESULTS: Lipid metabolism disorders, oxidative stress injury, and low-grade inflammation in model rats were ameliorated by PMFs administration. Numerous vacuoles and lipid droplets in hepatocytes were markedly reduced. In vitro experiments results revealed decreased NBD-cholesterol levels in RAW264.7 cells and increased NBD-cholesterol levels in BRL cells following PMFs intervention. PMFs upregulated the expression of proteins associated with the RCT pathway, such as LXRα, ABCA1, LDLR, and SR-BI, thereby promoting TC entry into the liver. Meanwhile, the expression of proteins associated with cholesterol metabolism and efflux pathways such as CYP7A1, CYP27A1, CYP7B1, ABCG5/8, ABCB1, and BSEP were regulated, thereby promoting cholesterol metabolism. Moreover, PMFs treatment regulated the expression of proteins related to the pathway of enterohepatic circulation of bile acids, such as ASBT, OSTα, NTCP, FXR, FGF15, and FGFR4, thereby maintaining lipid metabolism. CONCLUSIONS: PMFs might ameliorate hypercholesterolemia by promoting the entry of cholesterol into the liver through the RCT pathway, followed by excretion via metabolism pathways of cholesterol and bile acid. These findings provide a promising therapeutic potential for PMFs to treat hypercholesterolemia.


Asunto(s)
Hipercolesterolemia , Hiperlipidemias , Ratas , Animales , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Colesterol , Hígado , Hiperlipidemias/metabolismo , Metabolismo de los Lípidos , Colesterol 7-alfa-Hidroxilasa/metabolismo , Inflamación/patología , Ácidos y Sales Biliares/metabolismo , Dieta Alta en Grasa
5.
Biochem Pharmacol ; 220: 115985, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154545

RESUMEN

Despite the availability of many therapeutic options, the prevalence of hypercholesterolemia remains high. There exists a significant unmet medical need for novel drugs and/or treatment combinations to effectively combat hypercholesterolemia while minimizing adverse reactions. The modulation of cholesterol 7α-hydroxylase (CYP7A1) expression via perturbation of the farnesoid X receptor (FXR) - dependent pathways, primarily FXR/small heterodimer partner (SHP) and FXR/ fibroblast growth factor (FGF)-19/ fibroblast growth factor receptor (FGFR)-4 pathways, presents as a potential option to lower cholesterol levels. This paper provides a comprehensive review of the important role that CYP7A1 plays in cholesterol homeostasis and how its expression can be exploited to assert differential control of bile acid synthesis and cholesterol metabolism. Additionally, the paper also summarizes the current therapeutic options for hypercholesterolemia, and positions modulators of CYP7A1 expression, namely FGFR4 inhibitors and FXR antagonists, as emerging and distinct pharmacological agents to complement and diversify the treatment regime. Their mechanistic and clinical considerations are also extensively described to interrogate the benefits and risks associated with using FXR-mediating agents, either singularly or in combination with recognised agents such as statins to target hypercholesterolemia.


Asunto(s)
Hipercolesterolemia , Humanos , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Hígado/metabolismo , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(11): 1977-1983, 2023 Nov 20.
Artículo en Chino | MEDLINE | ID: mdl-38081618

RESUMEN

OBJECTIVE: To investigate the effect of yacon root extract on lipid metabolism in rats with hyperlipidemia (HLP) and its underlying mechanisms. METHODS: SD rat models of HLP induced by high- fat diet feeding for 8 weeks were randomized into the model group, fenofibrate treatment group (27 mg/kg), and yacon extract treatment groups at doses of 5, 2.5 and 1.25 g/kg (n=10). The rats were given corresponding drug treatments via gavage for 8 weeks. After the treatments, the rats were observed for body weight changes, liver coefficient, liver pathology, and serum levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). The mRNA and protein expressions of HMGCR, PPARα, CYP7A1, and CPT-1 in the liver were detected using RT-qPCR and Western blotting. RESULTS: Compared with those in the model group, the rats treated with fenofibrate and 5 g/kg yacon root extract showed significantly slower body weight gain and lower liver coefficient (P < 0.05) with lower serum levels of TG, TC, and LDL- C (P < 0.05) but higher HDL- C level (P < 0.05). The HLP rat models showed obvious fatty degeneration and vacuolar changes in the liver, which were significantly alleviated by fenofibrate treatment and by treatment with yacon root extract in a dose-dependent manner. Both fenofibrate and 5 g/kg yacon root extract significantly lowered the mRNA and protein expression levels of HMGCR (P < 0.001) and increased the expressions of PPARα, CYP7A1, and CPT-1 in the liver of HLP rats (P < 0.001). CONCLUSION: Yacon root extract can reduce serum TG and TC levels in HLP rats possibly by inhibiting HMGCR expression and activating the PPARα/CYP7A1/CPT-1 signaling pathway, thereby promoting fatty acid ß oxidation and bile acid metabolism.


Asunto(s)
Fenofibrato , Hiperlipidemias , Animales , Ratas , Peso Corporal , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , LDL-Colesterol , Dieta Alta en Grasa , Hiperlipidemias/tratamiento farmacológico , Metabolismo de los Lípidos , Hígado/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Ratas Sprague-Dawley , ARN Mensajero/metabolismo , Triglicéridos
7.
J Med Food ; 26(8): 529-539, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37594559

RESUMEN

In this study, we evaluated the effects of Lactobacillus reuteri NCIMB (LRC™) supplementation on hypercholesterolemia by researching its effects on cellular cholesterol metabolism in hypercholesterolemic rats (KHGASP-22-170) and HepG2 cell line. Rats were separated into six groups after adaptation and were then fed a normal control (NC), a high-cholesterol diet (HC), or a HC supplemented with simvastatin 15 mg/kg body weight (positive control [PC]), LRC 1 × 109 colony-forming units (CFU)/rat/day, LRC 4 × 109 CFU/rat/day, or LRC 1 × 1010 CFU/rat/day (1 × 109, 4 × 109, or 1 × 1010). The rats were dissected to study the effects of LRC on cholesterol metabolism and intestinal excretion at the end of experimental period. We discovered that LRC mainly participated in the restraint of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the uptake of low-density lipoprotein (LDL) cholesterol into tissues, partially in the transport of cholesteryl esters into high density lipoprotein for maturation, and intestinal excretion of cholesterol. These results are supported by the expression of transcription factors and enzymes such as HMG-CoA reductase, SREBP2, CYP7A1, CETP, and LCAT in both messenger RNA (mRNA) and protein levels in serum and hepatic tissue. Furthermore, the LRC treatment in HepG2 significantly reduced the mRNA expression of HMG-CoA reductase, SREBP2, and CEPT and significantly increased the mRNA expression of LDL-receptor, LCAT, and CYP7A1 at all doses. Hence, we suggest that LRC supplementation could alleviate the serum cholesterol level by inhibiting the intracellular cholesterol synthesis, and augmenting excretion of intestinal cholesterol.


Asunto(s)
Hipercolesterolemia , Limosilactobacillus reuteri , Animales , Ratas , Colesterol , Hipercolesterolemia/tratamiento farmacológico , Metabolismo de los Lípidos , Colesterol 7-alfa-Hidroxilasa/genética
8.
Eur J Pharmacol ; 955: 175891, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429516

RESUMEN

BACKGROUND & AIMS: Hyodeoxycholic acid (HDCA), a hydrophilic bile acid (BA), may prevent and suppress the formation of cholesterol gallstones (CGs). However, the mechanism by which HDCA prevents CGs formation remains unclear. This study aimed to investigate the underlying mechanism of HDCA in preventing CG formation. METHODS: C57BL/6J mice were fed either a lithogenic diet (LD), a chow diet, or LD combined with HDCA. The concentration of BAs in the liver and ileum were determined using liquid chromatography-mass spectrometry (LC-MS/MS). Genes involved in cholesterol and BAs metabolism were detected using polymerase chain reaction (PCR). The gut microbiota in the faeces was determined using 16S rRNA. RESULTS: HDCA supplementation effectively prevented LD-induced CG formation. HDCA increased the gene expression of BA synthesis enzymes, including Cyp7a1, Cyp7b1, and Cyp8b1, and decreased the expression of the cholesterol transporter Abcg5/g8 gene in the liver. HDCA inhibited LD-induced Nuclear farnesoid X receptor (Fxr) activation and reduced the gene expression of Fgf15 and Shp in the ileum. These data indicate that HDCA could prevent CGs formation partly by promoting BA synthesis in the liver and reduced the cholesterol efflux. In addition, HDCA administration reversed the LD-induced decrease in the abundance of norank_f_Muribaculaceae, which was inversely proportional to cholesterol levels. CONCLUSIONS: HDCA attenuated CG formation by modulating BA synthesis and gut microbiota. This study provides new insights into the mechanism by which HDCA prevents CG formation. LAY SUMMARY: In this study, we found that HDCA supplementation suppressed LD-induced CGs in mice by inhibiting Fxr in the ileum, enhancing BA synthesis, and increasing the abundance of norank_f_Muribaculaceae in the gut microbiota. HDCA can also downregulate the level of total cholesterol in the serum, liver, and bile.


Asunto(s)
Cálculos Biliares , Microbioma Gastrointestinal , Animales , Ratones , Cálculos Biliares/etiología , Cálculos Biliares/prevención & control , Cálculos Biliares/metabolismo , ARN Ribosómico 16S/genética , Cromatografía Liquida , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Colesterol/metabolismo , Hígado , Ácidos y Sales Biliares/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética
9.
Zoolog Sci ; 40(3): 208-218, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37256568

RESUMEN

Two cytochrome P450 genes homologous to human CYP7A1 and CYP27A1 were cloned from the non-parasitic Japanese lamprey Lethenteron reissneri. Lamprey cyp7a1 mRNA had varied expression levels among individuals: about four orders of magnitude differences in larval liver and nearly three orders of magnitude differences in male adult liver. Overexpressed Cyp7a1 protein tagged with green fluorescent protein (GFP) was localized to the endoplasmic reticulum. Lamprey cyp27a1 mRNA had relatively constant expression levels: within two orders of magnitude differences in larvae and adult liver and intestine. GFP-tagged Cyp27a1 protein was localized to mitochondria. The expression profiles of lamprey cyp7a1 and cyp27a1 genes and the cellular localizations of their products were in good agreement with their counterparts in mammals, where these two P450s catalyze initial hydroxylation reactions of cholesterol in classical and alternative pathways of bile acid synthesis, respectively. The cyp7a1 mRNA levels in adult male liver showed significant negative correlations to both body weight and total length of the animal, implying the involvement of the gene in the production of female-attractive pheromones in sexually matured male livers. The lamprey Cyp7a1 contains a long extension of 116 amino acids between helices D and E of the protein. Possible roles of this extension in regulating the enzymatic activity of lamprey Cyp7a1 are discussed.


Asunto(s)
Lampreas , Hígado , Animales , Femenino , Masculino , Ácidos y Sales Biliares/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Lampreas/genética , Lampreas/metabolismo , Hígado/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
J Lipid Res ; 64(6): 100390, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209828

RESUMEN

Several epidemiological studies suggest a correlation between eating time and obesity. Night eating syndrome characterized by a time-delayed eating pattern is positively associated with obesity in humans as well as in experimental animals. Here, we show that oil intake at night significantly makes more fat than that at day in wild-type mice, and circadian Period 1 (Per1) contributes to this day-night difference. Per1-knockout mice are protected from high-fat diet-induced obesity, which is accompanied by a reduction in the size of the bile acid pool, and the oral administration of bile acids restores fat absorption and accumulation. We identify that PER1 directly binds to the major hepatic enzymes involved in bile acid synthesis such as cholesterol 7alpha-hydroxylase and sterol 12alpha-hydroxylase. A biosynthesis rhythm of bile acids is accompanied by the activity and instability of bile acid synthases with PER1/PKA-mediated phosphorylation pathways. Both fasting and high fat stress enhance Per1 expression, increasing the fat absorption and accumulation. Our findings reveal that Per1 is an energy regulator and controls daily fat absorption and accumulation. Circadian Per1 controls daily fat absorption and accumulation, suggesting Per1 is a potential candidate of a key regulator in stress response and the relevant obesity risk.


Asunto(s)
Ácidos y Sales Biliares , Ligasas , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Ligasas/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Proteínas Circadianas Period/metabolismo , Fosforilación , Factores de Transcripción/metabolismo
11.
Phytomedicine ; 113: 154703, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36889164

RESUMEN

BACKGROUND: Hepatic lipid accumulation was a major promoter for the further development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2DM). mTOR/YY1 signaling pathway regulated many metabolic processes in different organs, and played an important role in hepatic lipid metabolism. Thus, targeting mTOR/YY1 signaling pathway might be a novel therapeutic strategy of T2DM-associated NALFD. PURPOSE: To investigate the effects and the mechanism of quercetin against T2DM-associated NAFLD. STUDY DESIGN AND METHODS: The combine abilities of 24 flavonoid compounds with mTOR were detected by computer virtual screening (VS) and molecular modeling. mTOR/YY1 signaling pathway was examined in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-cultured HepG2 cells. YY1 overexpression lentivirus vector and mTOR specific inhibitor rapamycin were used to further identify the indispensable role of mTOR/YY1 signaling pathway in quercetin's amelioration effect of hepatic lipid accumulation in vitro. Clinical studies, luciferase assay and chromatin immunoprecipitation (ChIP) assay were all carried out to investigate the potential mechanisms by which quercetin exerted its amelioration effect of hepatic lipid accumulation. RESULTS: Quercetin had the strongest ability to combine with mTOR and could competitively occupy its binding pocked. Along with the alleviated hepatic injury by quercetin, mTOR/YY1 signaling pathway was down-regulated in vivo and in vitro. However, the alleviation effect of quercetin against hepatic lipid accumulation was inhibited by YY1 overexpression in vitro. Mechanistically, the down-regulated nuclear YY1 induced by quercetin directly bound to CYP7A1 promoter and activated its transcription, resulting in the restoration of cholesterol homeostasis via the conversion of cholesterol-to-bile acids (BAs). CONCLUSION: The hepatoprotective effect of quercetin on T2DM-associated NAFLD was linked to the restoration of cholesterol homeostasis by the conversion of cholesterol-to-BAs via down-regulating mTOR/YY1 signaling pathway, leading to the increased CYP7A1 activity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Quercetina/farmacología , Quercetina/uso terapéutico , Ácidos y Sales Biliares/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Colesterol/metabolismo , Metabolismo de los Lípidos , Colesterol 7-alfa-Hidroxilasa/metabolismo
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 361-366, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-36949699

RESUMEN

Objective: To investigate the cholesterol 7α-hydroxylase gene ( CYP7A1)-204A/C single nucleotide polymorphism and its relationship with the blood lipid levels of pregnant women with gestational diabetes mellitus (GDM) and normal pregnant women. Methods: The genotype and allele frequencies of CYP7A1-204A/C gene polymorphism of 1037 normal pregnant women, the normal controls, and 627 pregnant women with GDM were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and blood glucose (Glu) were measured by enzymatic assay. Chemiluminescence determination of plasma insulin (Ins) was conducted. Apolipoproteins A1 (apoA1) and B (apoB) were measured by the turbidimetric immunoassay. Results: Allele frequencies of A and C at the CYP7A1-204A/C polymorphic locus were 0.586 and 0.414, respectively, in the GDM group and 0.557 and 0.443, respectively in the control group. The distribution of genotype frequencies in both groups showed conformity with the Hardy-Weinberg principle. There was no significant difference in allele and genotype frequencies between the GDM group and the control group. In the control group, carriers of the genotype AA were associated with significantly higher concentrations of apoA1 and lower levels of Ins and homeostatic model assessment of insulin resistance (HOMA-IR) compared with those with genotype CC (all P<0.05). In the non-obese subgroup of the control subjects, carriers of the genotype CC were associated with significantly higher plasma TG or apoA1 levels compared with those with genotype AA ( P<0.05). In the GDM group, carriers with genotype AA of CYP7A1-204A/C polymorphism had elevated levels of gestational weight gain (GWG) compared with those with genotype CC ( P<0.05). Conclusion: These results suggest that 204A/C polymorphism in the CYP7A1 gene is not associated with GDM, but may be closely associated with gestational weight gain in pregnant women with GDM. Variants in this locus are strongly associated with plasma apoA1, Ins, and HOMA-IR levels in the controls and elevated plasma TG levels in non-obese controls.


Asunto(s)
Diabetes Gestacional , Ganancia de Peso Gestacional , Femenino , Humanos , Embarazo , Colesterol 7-alfa-Hidroxilasa/genética , HDL-Colesterol , Diabetes Gestacional/genética , Predisposición Genética a la Enfermedad , Genotipo , Polimorfismo de Nucleótido Simple , Triglicéridos
13.
Biomed Pharmacother ; 159: 114270, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36680812

RESUMEN

The RAS-MAPK signaling pathway is one of the most frequently dysregulated pathways in human cancer. Small molecule inhibitors directed against this pathway have clinical activity in patients with various cancer types and can improve patient outcomes. However, the use of these drugs is associated with adverse effects, which can result in dose reduction or treatment interruption. A better molecular understanding of on-target, off-tumor effects may improve toxicity management. In the present study, we aimed to identify early initiating biological changes in the liver upon pharmacological inhibition of the RAS-MAPK signaling pathway. To this end, we tested the effect of MEK inhibitor PD0325901 using mice and human hepatocyte cell lines. Male C57BL/6 mice were treated with either vehicle or PD0325901 for six days, followed by transcriptome analysis of the liver and phenotypic characterization. Pharmacological MEK inhibition altered the expression of 423 genes, of which 78 were upregulated and 345 were downregulated. We identified Shp, a transcriptional repressor, and Cyp7a1, the rate-limiting enzyme in converting cholesterol to bile acids, as the top differentially expressed genes. PD0325901 treatment also affected other genes involved in bile acid regulation, which was associated with changes in the composition of plasma bile acids and composition and total levels of fecal bile acids and elevated predictive biomarkers of early liver toxicity. In conclusion, short-term pharmacological MEK inhibition results in profound changes in bile acid metabolism, which may explain some of the clinical adverse effects of pharmacological inhibition of the RAS-MAPK pathway, including gastrointestinal complications and hepatotoxicity.


Asunto(s)
Hígado , Receptores Citoplasmáticos y Nucleares , Animales , Humanos , Masculino , Ratones , Ácidos y Sales Biliares/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
14.
J Sci Food Agric ; 103(3): 1283-1293, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36087337

RESUMEN

BACKGROUND: l-Theanine (LTA) is a biologically active ingredient in tea that shows great potential for regulating lipid metabolism. Bile acids (BA), an important end-product of cholesterol catabolism, participate in the regulation of lipid metabolism and gut microbiota. Here, we investigated the effect of LTA on lipid metabolism and the mechanism by which it regulates BA metabolism and gut microbiota. Male BALB/c mice were treated with LTA for 28 days. RESULTS: Daily LTA doses of 100 and 300 mg kg-1  d-1 altered the gut microbiota in mice, predominantly by decreasing Lactobacillus, Streptococcus, Bacteroides, Clostridium and Enterorhabdus microbes associated with bile-salt hydrolase (BSH) activity, thereby decreasing the activity of BSH and increasing the levels of ileum conjugated BA (such as glycocholic acid (GCA) and lithocholic acid), thereby inhibiting the intestinal farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signaling pathway. Inhibition of FXR-FGF15 signaling was accompanied by upregulation of cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein expression and increased hepatic production of cholic acid, deoxycholic acid, GCA, glycine cholic acid and glycine ursodeoxycholic acid. Meanwhile, increasing hepatic unconjugated BA upregulated the mRNA and protein expression of liver 3-hydroxy-3-methylglutaryl-CoA reductase and downregulated the mRNA and protein expression of stearoyl-CoA desaturase-1, liver low-density lipoprotein receptor and type B scavenger receptor. Therefore, the serum levels of cholesterol and triglycerides decreased. CONCLUSION: Our findings indicate that LTA regulates lipid metabolism by modulating the gut microbiota and BA metabolism via the FXR-FGF15-CYP7A1 pathway. © 2022 Society of Chemical Industry.


Asunto(s)
Microbioma Gastrointestinal , Metabolismo de los Lípidos , Masculino , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Colesterol/metabolismo , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo
15.
Braz. j. biol ; 83: e248755, 2023. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1350303

RESUMEN

Abstract Consuming a high-fat diet causes a harmful accumulation of fat in the liver, which may not reverse even after switching to a healthier diet. Different reports dealt with the role of purslane as an extract against high-fat diet; meanwhile, it was necessary to study the potential role of fresh purslane as a hypolipidemic agent. This study is supposed to investigate further the potential mechanism in the hypolipidemic effect of fresh purslane, by measuring cholesterol 7a-hydroxylase (CYP7A1) and low-density lipoprotein receptor (Ldlr). Rats were divided into two main groups: the first one is the normal control group (n=7 rats) and the second group (n=28 rats) received a high fat diet for 28 weeks to induce obesity. Then the high fat diet group was divided into equal four subgroups. As, the positive control group still fed on a high fat diet only. Meanwhile, the other three groups were received high-fat diet supplemented with a different percent of fresh purslane (25, 50 and 75%) respectively. At the end of the experiment, rats were sacrificed and samples were collected for molecular, biochemical, and histological studies. Current study reported that, supplementation of fresh purslane especially at a concentration of 75% play an important role against harmful effects of high-fat diet at both cellular and organ level, by increasing CYP7A1 as well as Ldlr mRNA expression. Also, there were an improvement on the tested liver functions, thyroid hormones, and lipid profile. Fresh purslane plays the potential role as a hypolipidemic agent via modulation of both Ldlr and Cyp7A, which will point to use fresh purslane against harmful effects of obesity.


Resumo O consumo de uma dieta rica em gordura causa um acúmulo prejudicial de gordura no fígado, que pode não reverter mesmo após a mudança para uma dieta mais saudável. Diferentes relatórios trataram do papel da beldroega como um extrato contra uma dieta rica em gordura; entretanto, foi necessário estudar o papel potencial da beldroega fresca como agente hipolipemiante. Este estudo pretende investigar mais profundamente o mecanismo potencial no efeito hipolipidêmico da beldroega fresca, medindo o colesterol 7a-hidroxilase (CYP7A1) e o receptor de lipoproteína de baixa densidade (Ldlr). Os ratos foram divididos em dois grupos principais: o primeiro é o grupo controle normal (n = 7 ratos) e o segundo grupo (n = 28 ratos) recebeu dieta rica em gorduras por 28 semanas para induzir a obesidade. Em seguida, o grupo de dieta rica em gordura foi dividido em quatro subgrupos iguais. Como, o grupo de controle positivo ainda se alimentava apenas com dieta rica em gordura. Enquanto isso, os outros três grupos receberam dieta rica em gordura suplementada com diferentes porcentagens de beldroegas frescas (25%, 50% e 75%), respectivamente. Ao final do experimento, os ratos foram sacrificados e amostras coletadas para estudos moleculares, bioquímica e histológicos. O estudo atual relatou que a suplementação de beldroegas frescas, especialmente a uma concentração de 75%, desempenha papel importante contra os efeitos prejudiciais da dieta rica em gordura em nível celular e orgânico, aumentando a expressão de CYP7A1 e Ldlr mRNA. Além disso, houve melhora nas funções hepáticas testadas, nos hormônios tireoidianos e no perfil lipídico. Beldroegas frescas desempenham papel potencial como agente hipolipemiante por meio da modulação de Ldlr e Cyp7A, o que apontará para o uso de beldroegas frescas contra os efeitos nocivos da obesidade.


Asunto(s)
Animales , Ratas , Portulaca , Dieta Alta en Grasa/efectos adversos , Hipolipemiantes , Colesterol 7-alfa-Hidroxilasa , Ratas Sprague-Dawley , Hígado
16.
Chemosphere ; 309(Pt 2): 136739, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36223820

RESUMEN

Studies have shown that kresoxim-methyl (KM) and other strobilurin fungicides have toxic effects on aquatic organisms. However, the potential deleterious effects of kresoxim-methyl (KM) on adult zebrafish regarding the ecological risk of environmental concentration remain unclear. Here, the histology and untargeted metabonomics was used to investigate the adverse effect on female zebrafish after exposure to KM at environmental concentration, aquatic life benchmark and one-half LC50 of adult zebrafish. Results demonstrated KM affected zebrafish liver, ovary and intestine development, blurred the boundary between hepatocytes or caused hepatic vacuoles, increased the percentage of perinucleolar oocyte and cortical alveolus oocyte, decreased intestinal goblet cells and disturbed villus and wall integrity after 21 d exposure. Metabonomics showed different concentrations of KM simultaneously influenced the metabolites annotated to vitamin digestion and absorption, serotonergic synapse, retinol metabolism, ovarian steroidogenesis and arachidonic acid (AA) metabolism in zebrafish liver. Results showed the decreased triglyceride and cholesterol levels, as well as the metabolic alterations in amino acid, lipid, vitamin and retinol metabolism caused by KM, might disturb the energy supply for normal liver development and oocyte maturation. In addition, KM altered the transcription of Tdo2a, Tdo2b, Ido1, Cxcl8b, Cyp7a, Cyp11a, Cyp11b, Cyp17a, Cyp19a, Hsd3ß, Hsd17ß, Pla2, Ptgs2a and Ptgs2b, the level of TG, TC, MDA, IFN, IL6 and Ca2+, and the activity of CAT, SOD Ca2+-ATPase in zebrafish liver. Moreover, cytoscape analysis suggested the disturbed AA metabolism caused by KM, might interconnect multiple metabolic pathways to share implicated function in the regulation of oocyte maturation and immune response. Current study brought us closer to an incremental understanding of the toxic mechanism of KM on adult zebrafish, indicated there was crosstalk among different regulatory pathways to regulate the metabolic disorders and biologically hazardous effects induced by KM.


Asunto(s)
Fungicidas Industriales , Contaminantes Químicos del Agua , Animales , Femenino , Estrobilurinas/toxicidad , Pez Cebra/metabolismo , Fungicidas Industriales/toxicidad , Colesterol 7-alfa-Hidroxilasa/metabolismo , Ácido Araquidónico/metabolismo , Interleucina-6/metabolismo , Vitamina A , Superóxido Dismutasa/metabolismo , Vitaminas/metabolismo , Aminoácidos/metabolismo , Triglicéridos/metabolismo , Adenosina Trifosfatasas/metabolismo , Colesterol/metabolismo , Fosfolipasas A2/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
17.
Nutrients ; 14(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36235710

RESUMEN

A maternal low-protein (LP) diet during gestation and/or lactation results in metabolic syndrome in their offspring. Here, we investigated the effect of maternal LP diet during puberty and adulthood on the metabolic homeostasis of glucose and lipids in offspring. Female mice were fed with normal-protein (NP) diet or a LP diet for 11 weeks. Male offspring were then fed with a high-fat diet (NP-HFD and LP-HFD groups) or standard chow diet (NP-Chow and LP-Chow groups) for 4 months. Results showed that maternal LP diet during puberty and adulthood did not alter the insulin sensitivity and hepatic lipid homeostasis of their offspring under chow diet, but aggravated insulin resistance, hepatic steatosis, and hypercholesterolemia of offspring in response to a post-weaning HFD. Accordingly, transcriptomics study with offspring's liver indicated that several genes related to glucose and lipid metabolism, including lipoprotein lipase (Lpl), long-chain acyl-CoA synthetase 1 (Acsl1), Apoprotein A1 (Apoa1), major urinary protein 19 (Mup19), cholesterol 7α hydroxylase (Cyp7a1) and fibroblast growth factor 1 (Fgf1), were changed by maternal LP diet. Taken together, maternal LP diet during puberty and adulthood could disarrange the expression of metabolic genes in the liver of offspring and aggravate insulin resistance and hepatic steatosis in offspring fed a HFD.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Efectos Tardíos de la Exposición Prenatal , Animales , Apoproteínas/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Coenzima A/metabolismo , Dieta Alta en Grasa/efectos adversos , Dieta con Restricción de Proteínas/efectos adversos , Hígado Graso/metabolismo , Femenino , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Glucosa/metabolismo , Ligasas/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos , Lipoproteína Lipasa/metabolismo , Hígado/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Maduración Sexual
18.
Food Funct ; 13(20): 10665-10679, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36172720

RESUMEN

The improvement of lipid metabolism by capsaicin (CAP) has been extensively studied, mostly with respect to the vanilloid type 1 (TRPV1) ion channel and intestinal flora. In this study, a model was established in germ-free mice by using resiniferatoxin (RTX) to ablate TRPV1 ion channels. Bile acid composition, blood parameters, and colonic transcriptome analyses revealed that CAP could improve dyslipidemia caused by high-fat diet even in the absence of TRPV1 ion channels and intestinal flora. CAP fed to germ mice decreased the concentrations of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), fasting blood glucose and fasting insulin, increased the concentration of high-density lipoprotein (HDL-C), and decreased the levels of plasma endotoxin and pro-inflammatory factor interleukin 6 (IL-6). Furthermore, CAP could affect both classical and alternative pathways of cholesterol conversion by changing the composition of bile acids, reducing the concentrations of glycocholic acid (GCA), ursodeoxycholic acid (UDCA) and glycochenodeoxycholic acid (GCDCA). First, changing the composition of bile acids inhibited the expression of colon Fgf15. CAP promoted the expression of Cyp7a1 (Cytochrome p450, family 7, subfamily a, and polypeptide 1) in the liver, and thus reduced TC and TG levels. In addition, it could change the composition of bile acids and increase the expression of Cyp7b1 (Cytochrome p450, family 7, subfamily b, and polypeptide 1) in the colon, increase Cyp7b1 protein in the liver and thus inhibit fat accumulation. In conclusion, CAP could alter the composition of bile acids and promote the conversion of cholesterol to bile acids, thereby improving lipid metabolism abnormalities caused by a high-fat diet.


Asunto(s)
Dislipidemias , Insulinas , Animales , Ácidos y Sales Biliares/metabolismo , Glucemia/metabolismo , Capsaicina , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , LDL-Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Dislipidemias/tratamiento farmacológico , Dislipidemias/genética , Dislipidemias/metabolismo , Endotoxinas , Ácido Glicoquenodesoxicólico/metabolismo , Insulinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipoproteínas HDL , Hígado/metabolismo , Ratones , Triglicéridos/metabolismo , Ácido Ursodesoxicólico/metabolismo
19.
Food Funct ; 13(19): 9988-9998, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36062986

RESUMEN

Hypercholesterolaemia is a significant risk factor for developing vascular disease and fatty liver. Pineapple (Ananas comosus), a tropical fruit widely cultivated in Asia, is reported to exhibit antioxidant and cholesterol-lowering activity; however, the potential hypolipidaemic mechanisms of pineapple fruit remain unknown. Therefore, we aimed to identify the anti-hypercholesterolaemic mechanism of pineapple fruit and to study the effect of pineapple fruit intake on hypercholesterolaemia-induced vascular dysfunction and liver steatosis in a high-cholesterol diet (HCD)-fed rats. Male Sprague Dawley rats were fed with standard diet or HCD, and the pineapple fruit was orally administered to HCD-fed rats for 8 weeks. At the end of treatment, vascular reactivity and morphology of aortas, as well as serum nitrate/nitrite (NOx), were determined. Liver tissues were also examined for histology, lipid content, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) activity, and protein expression of cholesterol metabolism-related enzymes. Results showed that pineapple fruit reduced the levels of hepatic cholesterol and triglycerides, and improved histological characteristics of a fatty liver in HCD-fed rats. Pineapple fruit also increased serum NOx, restored endothelium-dependent vasorelaxation, and reduced structural alterations in aortas of rats fed the HCD. In addition, a reduction of HMGCR activity and the downregulation of hepatic expression of HMGCR and sterol-regulatory element-binding protein 2 (SREBP2), as well as the upregulation of hepatic expression of cholesterol 7α-hydroxylase (CYP7A1) and LDL receptor (LDLR) were found in pineapple fruit-treated hypercholesterolaemic rats. These results indicate that pineapple fruit consumption can restore fatty liver and protect vascular endothelium in diet-induced hypercholesterolaemia through an improvement of hepatic cholesterol metabolism.


Asunto(s)
Ananas , Hígado Graso , Hipercolesterolemia , Hiperlipidemias , Enfermedades Vasculares , Ananas/metabolismo , Animales , Antioxidantes/farmacología , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Dieta , Hígado Graso/metabolismo , Frutas/metabolismo , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Nitratos , Nitritos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de LDL/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Triglicéridos/metabolismo , Enfermedades Vasculares/metabolismo
20.
Nutrients ; 14(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014836

RESUMEN

This study examined the effect of extruded Portulaca oleracea L. extract (PE) in rats fed a high-cholesterol diet through the AMP-activated protein kinase (AMPK) and microRNA (miR)-33/34a pathway. Sprague-Dawley rats were randomized into three groups and fed either a standard diet (SD), a high-cholesterol diet containing 1% cholesterol and 0.5% cholic acid (HC), or an HC diet containing 0.8% PE for 4 weeks. PE supplementation improved serum, liver, and fecal lipid profiles. PE upregulated the expression of genes involved in cholesterol efflux and bile acids' synthesis such as liver X receptor alpha (LXRα), ATP-binding cassette subfamily G5/G8 (ABCG5/8), and cholesterol 7 alpha-hydroxylase (CYP7A1), and downregulated farnesoid X receptor (FXR) in the liver. In addition, hepatic gene expression levels of apolipoprotein A-l (apoA-1), paraoxonase 1 (PON1), ATP-binding cassette subfamily A1/G1 (ABCA1/G1), lecithin-cholesterol acyltransferase (LCAT), and scavenger receptor class B type 1 (SR-B1), which are related to serum high-density lipoprotein cholesterol metabolism, were upregulated by PE. Furthermore, hepatic AMPK activity in the PE group was higher than in the HC group, and miR-33/34a expression levels were suppressed. These results suggest that PE improves the cholesterol metabolism by modulating AMPK activation and miR-33/34a expression in the liver.


Asunto(s)
Hipercolesterolemia , MicroARNs , Portulaca , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Colesterol , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Dieta , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...